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Why Check Against Limit State?
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Limit State: Analysis and Design 
▪Premise of Limit State Analysis:

• Failure is imminent

• Strength of all elements resisting failure are mobilized simultaneously

• Analysis➔ Stage I ➔ Calculate Tmax(Z), To(Z) ➔ aka Internal Stability

▪Premise of Limit State Design: 
• Developed ‘active wedge’ is resisted by reinforcement ➔ Select 

reinforcement with adequate margin of safety against rupture

• Ensure existence of margin of safety on strength of soil

• Design ➔ Stage II ➔ Use LTDS to assess Fs on soil strength

➢Analysis is the basis for Design ➔ It defines conditions for 
imminent failure ➔ Allows for meaningful use of prescribed 
margins of safety on strength of both soil and geosynthetic 
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Limit State Analysis: Lateral Earth 
Pressure - Simplified AASHTO

▪Semi-empirical, verified at working load conditions (i.e., 
not at limit state)

▪Safe, fortunately economical, and easy to use➔
Credit: Turned an innovative technology into a commodity 

▪Batter is limited to ≤20
➔ What about slopes? 

▪What about complex geometries? Extrapolation to 
realistic geotechnical conditions (e.g., variable layout of 
reinforcement, marginal soils, tiered slopes/walls)? 

▪ Is it actually adequate for limit state?  If not, could it 
partially be overly-conservative? 
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Limit State Analysis: Continuum 
Mechanics (FE, FD)
▪Comprehensive approach

▪Valid for walls and slopes 

▪More complicated than AASHTO ➔ Could be useful in 
identifying potential failure geometries in complex problems

▪Not yet a common design tool in the US 

▪ Impractical tool to generate the instructive Tension Map at 
limit state (i.e., baseline solution explained later)
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Limit State Analysis: Global 
Limit Equilibrium (LE)
▪Simple and yet applicable to complex problems

▪No arbitrary distinction between ‘wall’ and ‘slope’

▪Global LE design is half-cooked➔ Strength is examined 
globally - along a singular slip surface - while locally 
required strength, including connections, is overlooked 
➔ That is, it ignores local demand by smearing 
(shedding or averaging) the load over all layers

Does not deal explicitly with ‘Internal Stability’ which is 
concerned with local demand ➔ It provides an important, 
but narrow, design perspective ➔ It skips Stage I
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LE is Classic…

▪Coulomb in 1766: Resultant force on a retaining 
is based on LE approach

▪First formulation related to slope stability: 
Culmann Wedge in 1866 
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Coulomb (1776) Active Wedge –
Gravity Wall: Find max(PA)

Physics is timeless… 

➔ Free-body 

diagram yielding 

equilibrium 

Premise: Small 

outwards wall 

movement ➔ Active 

soil wedge forms ➔

Po drops to PA

Note: Formation of planar surface does not mean wall failure 

➔ Wall is designed to resist the active wedge 12



Culmann (1866) Critical Wedge for 
Reinforced Slope: Find max(Tmax)

Physics: 

Free-body 

diagram 

Small stretch of 

reinforcement ➔

Active wedge 

develops➔

Load in 

reinforcement 

drops to Tmax

Note: Formation of slip surface does not mean structural failure ➔

Reinforcement is designed to resist the active soil wedge
13



Bishop (1955) Circular Arc: 
Find min(SF)=Fs

Bishop considers layered soil/complex problems.  Circle can degenerate to 

planar surface (if it is more critical), however, a priori assumed planar surface 

cannot degenerate to curved surface ➔ Valid for slopes and walls… 14



LE: Bishop Basic Formulation 

Safety Factor = 𝑆𝐹 = ∑MR/∑MD (sum is over n slices)
Factor of Safety = 𝐹𝑠= min(𝑆𝐹)

𝑺𝑭 =
σ
𝑐𝑖
′ ∆𝑥𝑖 + 𝑊𝑖 + 𝑄𝑣𝑖 − 𝑢𝑖 ∆𝑥𝑖 𝑡𝑎𝑛 𝜙𝑖

′

𝑚𝑖

σ 𝑊𝑖 + 𝑄𝑣𝑖 sin 𝛼𝑖 +
𝑄ℎ𝑖𝑑𝑖
𝑅

− 𝑇𝑖 𝑅𝑐 cos 𝛼𝑖

where 𝑚𝑖= cos α𝑖 + (sin α𝑖 tan𝜙𝑖’)/𝑺𝑭

𝑭𝒔 = min(𝑺𝑭)

Ti is reinforcement force at intersection with surface
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LE: 

Ti = Tensile Capacity 
Along Each Layer of 
Reinforcement

(Note: Front and rear 
pullout resistance 
enables the 
mobilization of 
LTDS=TLTDS)  
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Can We Use ‘Better’ LE Methods

▪Yes, we can… 

▪Recall the term framework in the title of presentation – it is not
restricted to a specific method of analysis

▪Han and Leshchinsky (2006) used Culmann - instructive but has 
limited use

▪ Leshchinsky et al. (2014) used log spiral - rigorous but not easy to 
use (also, limited to homogenous problems) 

▪ Leshchinsky et al. (2017) used Bishop - not rigorous but practical 

▪YOU may use rigorous a LE (e.g., Spencer, M-P) with general slip 
surface.  You can even use Limit Analysis…  
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The Safety Map Tool

▪Safety Map: Baker and Leshchinsky (2001) introduced 
the concept, proved its mathematical validity, and 
coined the term 

▪Safety Map = Color-coded map showing the spatial 
distribution of the safety factors, SF, in a slope ➔
Visual diagnostic tool for the state of stability of a 
reinforced mass

▪Design Objective: Select strength & layout of 
reinforcement to produce an efficient structure that is 
adequately stable
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Example Problem

20

Homogeneous soil:

 = 20 kN/m3

 = 28 deg. 



Unreinforced Problem (Bishop)
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SF Range:



Adequate Reinforcement Layout using 
Circular Arc (Bishop)
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SF Range:
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Inverse of Safety Map…
▪Safety Map finds the spatial distribution of the safety 

factors, SF, in a reinforced soil mass

▪Conversely, Internal Stability analysis in LE produces 
the tensile resistance needed for Fs=SF=1.0 
everywhere 

▪The Internal Stability approach produces the baseline 
solution: Tension Map means Treq(x), including Tmax

and To for each layer ➔ It leads to a rational and robust 
selection of reinforcement strength and facing
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Tension Map: Visualization of Treq(x)



The Framework: Process in Nutshell 

▪Check numerous test bodies setting SF=1.0 and 
calculating Treq(x) for each layer ➔ Use a systematic top-
down process

▪ For Treq(x) distribution, likelihood of failure along any 
surface is same ➔ Treq(x) therefore is termed Baseline 
Solution ➔ Tension Map 

▪ The tension, Treq(x), is limited by pullout at the rear and/or 
front ends

▪ Treq(x) is the resistance needed locally to yield a structure 
at a limiting equilibrium state
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Maximization Update…
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Details: Baseline & Pullout  

1. Treq(x) 2. Rear pullout constraint

3. Front pullout… oops 4. Adjust front pullout

➔ Upwards shift is To
28



Geosynthetic Reinforced Wall  
(Alabama, Photo: Feb 2007)

Mud Stains
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Advancement of Current Design

▪Apply the LE design approach in two stages: 
Internal Stability and Global Stability

▪Stage 1: Internal stability - Find Treq(x) in all 
reinforcements - Baseline Solution

▪Consider geometry, loading conditions, 
reinforcement layout, pullout resistance, any 
batter, water, seismicity, etc.

▪Stage 2: Global stability - consistent with current 
design ➔ Standard slope stability analysis
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Stage 1: Internal Stability

▪Find Treq(x) including Tmax & To (connection)

▪Determine max(Tmax) to select geosynthetic

▪LTDS=Fs-strength×max(Tmax) where Fs-strength=1.5 
[Note: In LRFD LF1.35 and RF0.9 ➔Hence 
Fs-strength needs to be > (1.35/0.9)=1.50…]

▪Tult=LTDS × RFcr × RFd × RFid

▪Stage 1 is a rational and robust alternative to 
existing approaches➔ Ensures that there is no 
overstressing of reinforcement  
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Stage 2: Global Stability

▪Select reinforcement and facing following 
Stage 1

▪Conduct global slope stability analysis to 
ascertain that for the selected facing, layout 
and strength of reinforcement, Fs≥1.30 for all 
feasible failure geometries

▪Increase the length and/or strength of 
reinforcement, if needed, to meet the 
prescribed on soil strength Fs
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Stage 2 Conducts Global Stability 
Why use then Internal Stability? 

- Reinforcement resistance in Global 

Stability is evenly divided amongst all 

layers ➔ May results in Tmax that is 

smaller than in Internal Stability ➔

Global ignores local demand through 

‘smearing’ or averaging 

- Global Stability tells us nothing

about connection load, To 

Global Stability: Locus of Tmax is 

NOT on a singular surface. 



So Why Stage 2 is important too?
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Benchmark Problem

Retained Soil:

 = 18 kN/m3

 = 30 & c = 0

Reinforced Soil:

 = 20 kN/m3

 = 34 & c = 0

1

10

Foundation Soil:  = 18 kN/m3 ,  = 30 , c = 10 kPa

L=4.2 m (L/H=0.7)

Sv=0.6 m

F* =  = 0.8; Cds=0.8; Fs-po=1.5

H=6 m
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Computed Distribution of Treq(x) 
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Computing Tmax in Internal Stability: 
Critical Circles 

1. Hypothesis in  

AASHTO: Locus of 

Tmax is defined by a 

singular slip surface. 

Is it?

2. Well-defined active 

and resistant zones. 

Is it?
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Tension Map

The mobilization 

of tension in each 

reinforcement 

can be visualized 

through the 

Tension Map ➔

Note location of 

Tmax
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Tmax and To Distribution 

max(Tmax): LE ➔ 10.9 kN/m AASHTO ➔19.3 kN/m
41



Horizontal Displacement Distribution

Treq(x) for Fs=1.0 allows for 

Estimation of the lateral 

displacement at a limit state 

e.g., for J=500 kN/m 
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Computed Distribution of Treq(x): 
Rc=0.2 
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Effects of Rc on Tmax and To

Sv=0.6 m

Rc=0.2

Rc=1.0

Note the different drawing scale for Tmax and To

44
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Effects of Secondary Layers 

Secondary Layers: 

L=1.2 m, Sv=0.6 m

Primary Layers:

L=4.2 m, Sv=0.6 m
Primary Layers:

L=4.2 m, Sv=0.3 m



Tmax and To: 
Secondary versus Close Spacing

Sv=0.3 mPrimary/Secondary Layout 

Depending on relative length of secondary reinforcement, Tmax may 

decrease. Generally it has significant effects on To (connection loads). 
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Effects of Shorter Reinforcement 

L/H=0.7 (L=4.2 m)L/H=0.5 (L=3.0 m)
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Effects of Shorter Reinforcement:
Tmax and To

L/H=0.7L/H=0.5

Generally, lower layers carry higher load due to compound failures ➔

Upper layers need to contribute less to produce Fs=1.0 ➔ Top layer 

carries less load thus resulting in smaller Tmax and To
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Effects of Backslope 

2(h):1(v) backslope

Backslope Rise 2.1 m

Flat Crest 



Effects of Backslope:
Tmax and To

Flat CrestBackslope: 2(h):1(v) with 2.1 m rise



Computing Tmax in Internal Stability: 
Critical Circles

Note: 

Global Stability ➔

Top 4 layers are 

not needed for 

stability. 

Baseline Solution, 

Stage 1 ➔

Identifies the need 

for these layers!



Effects of Surcharge (Dead Load) 

No 

Surcharge

Strip Footing Surcharge: 

100 kPa (B=3.0 m; C.L. 4.6 m 

from  Toe) 52



Effects of Surcharge: To and Tmax

No 

Surcharge

Strip Footing Surcharge: 100 kPa 

(B=3.0 m; C.L. 4.6 m from Toe)
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Effects of Seismicity 

No 

Seismicity 

PGA=0.4g. In design, 

LE uses 50%: Kh=0.2
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Seismic Effects: To and Tmax

No 

Seismicity
Seismicity:

Kh=0.2
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Critical Circles Rendering Tmax

AASHTO assumes singular Rankine’s 

wedge within reinforced mass ➔ Its 

inertia is evenly distributed amongst 

all layers to produce Tmd ➔ AASHTO 

ignores compound-like wedges where 

fewer layers are carrying larger inertia 

loading
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Effects of Facing: Small Blocks
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Blocks: u=20 kN/m3; Wu=0.3 m; 

Hu=0.20 m; ‘cu’=10 kPa & u=30



Effects of Small Blocks Facing:
Tmax and To

No Facing
Small Blocks Facing Units

Large blocks or high interblock and toe resistance may reduce 

significantly the need for reinforcement (length and strength)



3(v):1(h) Two-Tier Wall 

=20 kN/m3

=34 & c=0

=18 kN/m3

=30 & c=0

H=6 m; L=4.2 m 

Setback = 1.2 m 
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Tension Map: 2-Tier Wall
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Concluding Remarks 

▪ Baseline Solution: Fs=1.0 on soil strength is used 
to determine LTDS, consistent with Internal 
Stability principles ➔ LRFD can be used, same 
as in AASHTO

▪ Tmax and To: Global Stability ignores possible local 
overstressing while the Baseline Solution 
considers local demand rationally 

▪ Global LE: Applicable to external stability --
sliding, eccentricity, and bearing load



Concluding Remarks - Reference

Explicit LE example, adjusted to LRFD framework 
per AASHTO 2020, is detailed in:

Geotechnical Fundamentals for Transportation Projects 
– Geotechnical Engineering Circular (GEC) No. 1

Authors: Naresh C. Samtani an Jerry A. DiMaggio

Final draft in October 2020 to be released in 2021

Contract No: DTFH6117D00030L-693JJ319F000311


